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1. Summary:

Radio interference limits given in ITU-R RA 769 scale with the root of the product of
measurement bandwidth and integration time

2. Interference threshold calculation

2.1 Background of the Radiometer equation

Thermal noise has a Gaussian distribution p(u,u0) of amplitudes, given by its rms
amplitude u0.
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As a result, the distribution of noise power w, with average power w0, is that of the
squares of amplitudes (with an appropriate scale factor) given by a -distribution
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with x=w, =1/2 and =1/2w0 . The -distribution is not symmetric and defined only
for positive values of x!
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familiar 21/2 factor for the standard deviation of noise power.
(page 475, Gelman et al., Bayesian data analysis, Chapman & Hall, London, 1995).



One can show that the averages x of n noise power measurements also follow a -
distribution given for =1/2w0 by
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The graph illustrates the behaviour of the distribution function for different n:
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Increasing the number of averaged measurements leads to a decreasing width,
increasing symmetry and closer approach of the peak of the pdf: an illustration of the
central limit theorem. But strictly speaking the distribution can never become
Gaussian as it is only defined in x  (0 . A sufficiently large number of averaged
values may narrow the distribution enough that it can be approximated by a Gaussian
with negligible errors within a specified interval. There is however no advantage in
such an approximation as it does not simply any of the expressions compared to the
more familiar Gaussian.

The mean value is again given by  which evaluates to w0 for =n/2 and =n/2w0.

but the variance yields is now linearly decreasing as 
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Hence the standard deviation n for the average of n independent noise measurements

is given by  n
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The Nyquist-Shannon sampling theorem states that a function x(t) that contains no
higher frequency components than  is fully defined by sampling it at a rate s =

1/(2). This is a necessary and sufficient condition for the number of independent
measurements that can be made for a band-limited signal. The variable output of the
described square-law detector has a maximum frequency given by the bandwidth 



of the input noise signal. Hence the fastest sampling rate for independent

measurements of the output is  s
1
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and the number of independent measurements that are averaged over an integration

time tint is then n
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Using this result in the expression for n gives  n
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or more familiar as the sensitivity according to ITU-R RA 769-2, Annex 1, Equation 1
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where:

P and P: power spectral density of the noise

f0: bandwidth

t: integration time. P and P in equation (1) can be expressed in
temperature units through the Boltzmann’s constant, k:

TkPTkP  also;

(quoted from RA 769) and according to the recommendation, the applicable
interference threshold shall be 10% of P). The equation is also known as the
'radiometer equation'.

2.2 Scaling with measurement bandwidth and integration time.

Tables 1 and 2 of ITU-R 769-2 provide a convenient access to the interference limits
calculated from the radiometer equation.

 Let us use the example of the spectroscopy limit from table 2 for t int
.2000 s

at  .1612 MHz (column 1) and a bandwidth of  .20000 Hz (column 2).
 The next two columns (3&4) give typical receiver (TR= 10 K) and antenna

temperatures (TA=12 K), together yielding a system Temperature of 22K.
 Using the radiometer equation for the temperature sensitivity
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yields the entry of 3.479 mK in column 5.

 Multiplication with the Boltzmann constant and division by the measurement
bandwidth  gives the system sensitivity in terms of power spectral density
Ps:
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W
253.185 dB(W/Hz) listed in column 6.



 The interference limit is set to be 10 dB below the sensitivity and the product
with the observation bandwidth gives the input power limit in column 7:
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10 220.175 dB(W).

 The power flux density SH in column 8 is obtained through division by the

isotropic antenna area
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and is explicitly given by
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10 194.572 dB(W/m2)

 The last column (9) gives the emission limit in terms of spectral power flux
density spfd and can be had by simply omitting the bandwidth term in the
equation above:
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10 237.582 dB(Wm-2Hz-1)

Note that the conversion to the radio astronomical unit of Jansky is achieved
by adding 260 to the value in column 9. Hence the spectroscopy limit for 2000
s integration at 1420 MHz is equivalent to 22.4 dB(Jy) or 174.5 Jy.

The recommendation gives an explicit example (Appendix 1, 1.2) how integration
times scale w.r.t. to the reference time of 2000s:

=.10 log
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6.276 dB

The footnotes to tables 1 and 2 give further examples of the procedure to be used.

It follows from eqn. 1 and the derivation of the table entries, that changes in the
measurement bandwidth are to be treated in the same manner as changes in

integration time. Hence the equation
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used for the

calculation of the thresholds in Leeheim measurements is strictly in accordance with
the properties of noise statistics and measurements as outlined in ITU-R RA 769.



2.3 Transient sources

The limits in ITU-R RA 769 are given under the assumption of stationary
interference. However many sources may occupy only a bandwidth tr that is
smaller than the measurement bandwidth and also transmit their signal for durations
ttr that are much shorter than the measurement time. In these cases, one has to scale
the received peak power limit to the measurement bandwidth rec and integration
time tint:
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Times and bandwidths greater than the measurement bandwidth are dealt with in
accordance to the procedure in 2.2. It is therefore clear, that even very short duration
single transients can be source of interference if they are of sufficient strength. The
threshold level for a single interfering radio pulse of duration ttr and bandwidth tr

increases with integration time and measurement bandwidth:
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Because of that, the modern high time resolution digital receiver systems used in the
search for transient radio astronomical sources will pick up such signals and suffer
from interference, even if they happen only infrequently so that they would not have
been noticed on longer integrations.

At the Nyquist limit 2
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, and the limit of received peak power is is

simply given by )TT(k21.0P ralimH  . No averaging takes place and the

sensitivity is just at the system noise level, as used in common engineering practise.

Such a peak input power is typically 30 dB higher than the normal input power limit
given in column 7 of the tables in ITU-R RA 769, but it can nevertheless be reached
by strong pulsed transmissions achievable with modern digital equipment.


